Search results

Search for "metal–air batteries" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • ; microwave synthesis; oxygen electroreduction; reduced graphene oxide; silver NPs; Introduction Fuel cells and rechargeable metalair batteries have become an integral part of the renewable energy system because of their superior efficiency, high power density, and reliability. Also, they are
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • , Institute of Physical Chemistry, 52056 Aachen, Germany IM2NP, CNRS, Aix-Marseille Université, Université de Toulon, Toulon, France 10.3762/bjnano.12.87 Abstract An innovative approach for the design of air electrodes for metalair batteries are free-standing scaffolds made of electrospun polyacrylonitrile
  • at an overpotential of 100 mV and low overpotentials at current densities of 333 μA·cm−2 were found for all electrodes made from cobalt-decorated fibre mats carbonised at temperatures between 800 and 1000 °C. Keywords: carbon fibres; cobalt-decorated fibres; electrospinning; metalair batteries
  • overall performance [3]. The lack of discharge performance is attributed to the sluggish kinetics of the oxygen reduction reaction (ORR) at the air cathode [4], which reduces the practical power density. Further improvements of the cathode are essential for the long-term success of metalair batteries
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • , constant, on-demand, and reliable manner [3][4][5][6]. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play critical roles in many clean energy storage and conversion devices (e.g., hydrogen produced from water splitting via water electrolyzers, hydrogen fuel cells, and metalair
  • batteries [7][8][9][10]). In order to meet the requirements for efficient catalysts in practical applications, platinum group metal (PGM)-based catalysts are currently used as principal catalysts to reduce the overpotential of ORR and OER due to their slow kinetics [11][12][13]. The high cost, poor
PDF
Album
Full Research Paper
Published 02 Dec 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • intermittency of renewable energy sources such as solar and wind power [1][2][3]. The water oxidation (oxygen evolution reaction, OER) and its reverse, the oxygen reduction reaction (ORR) represent the limiting half-reaction of regenerative fuel cells [4][5], of some batteries (metalair batteries) [6][7] and
PDF
Album
Full Research Paper
Published 22 Jun 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • microporosity of the materials is critical for an efficient ORR. Keywords: amorphous carbon; graphitized carbon; hydrothermal carbonization; nitridation; nitrogen doping; oxygen reduction reaction (ORR); porosity; Introduction Fuel cells and metalair batteries are important renewable energy technologies
PDF
Album
Full Research Paper
Published 02 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • -insertion at the Sb-modified electrode in the potential range of −0.1 V to 1.1 V. Supporting Information Supporting Information File 284: Additional experimental details. Acknowledgements Part of these results were presented as the PhD dissertation of L. X. Zan with the title “Metalair Batteries: RRDE
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • splitting of water to molecular hydrogen via hydrogen and oxygen evolution reaction (HER and OER, respectively) are fundamental working mechanisms at the cathode of fuel cells, metalair batteries and dye-sensitized solar cells [2]. However, the current working catalysts are based on expensive metals, such
PDF
Album
Review
Published 18 Jul 2018

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • expectations. A new and promising concept is to add soluble and redox-active molecules to the liquid electrolyte. In 2011 Liox Power Inc. filed a patent application on such “soluble oxygen evolving catalysts for rechargeable metalair batteries” [96]. Those often called redox mediators (RM) molecules possess a
  • ORR/OER reactions in metalair batteries is not sufficient as also plating/stripping of the alkali metal needs to be reversible in order to achieve a long cycle life. Cell discharge using this IL based electrolyte at 25 µA/cm2 was characterized by a sloping decrease, charging (250 µA/cm2) mainly
PDF
Album
Review
Published 23 Apr 2015

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
PDF
Album
Review
Published 18 Aug 2014

Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells

  • Tatiana K. Zakharchenko,
  • Anna Y. Kozmenkova,
  • Daniil M. Itkis and
  • Eugene A. Goodilin

Beilstein J. Nanotechnol. 2013, 4, 758–762, doi:10.3762/bjnano.4.86

Graphical Abstract
  • reaction; Findings The idea to utilize oxygen as an oxidizer in rechargeable batteries has been kept in mind for a long time because of the easy availability of O2 in ambient air. Alkali metal negative electrodes were always attractive for metal–oxygen (metalair) batteries as they show record parameters
PDF
Album
Supp Info
Letter
Published 15 Nov 2013
Other Beilstein-Institut Open Science Activities